Effects of ionizing radiation on the chemical and isotopic composition of the geologic outcrops on Mars. Alexander A. Pavlov alexander.pavlov@nasa.gov ## Ionizing radiation - **Ionizing radiation:** GCR and SCR. GCR higher energies, does not change much. SCR up to 100s MeV, highly variable. Lya photon ~10 eV - **Ionizing radiation:** is usually ignored because the the total energy of Solar UV is ~10000 times higher than the total energy of the cosmic rays - **Ionizing radiation:** reached the Martian surface for **billions** of years due to thin Martian atmosphere and lack of magnetic filed. - **Ionizing radiation:** penetrates down to ~1 m into the solid rock (**unlike UV** and atmospheric oxidants) 6 5 ± 555344545 55534455 55544455 55544455 5554445 5554455 5554445 5554455 5554445 5554455545 555455 55545 555445 555445 5554455 Sign (1) Company (2) Company (3) ## 12C/13C ratio - Natural abundance: 12C ~99%; 13C ~1% - Ratio important for identification of the source of organic matter - Both 12C and 13C can be produced in spallogenic reactions on 16O - Long exposure would cause "heavy" organic matter ## Conclusions - Destruction of complex organic matter in the top 5-10 cm of soil by the ionizing radiation cannot be neglected if the age of exposure is > 200 Myr - 12C/13C will become "heavy" due to production of 13C by the ionizing radiation in the soil if the total carbon content is in ppm range ## Suggestions for the outcrop selection - Seek outcropes with fresh (<100 Myr old craters) craters - Seek outcropes with "high" erosion rates (~10 nm per year) - SCRs effects can be effectively eliminated by choosing outcropes at lower elevations